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Highly accurate solutions to hyperbolic boundary value problems may be obtained using 
Chebyshev spectral methods. However, with explicit time differencing the increased resolution 
of the Chebyshev series near the boundaries necessitates using very small time steps for 
stability, thus compromising efficiency. Recently. a method of time filtering was proposed 
which is claimed to make explicit time integrations unconditionally stable so that time steps 
may be chosen by accuracy requirements alone. An analysis of this method shows that the 
filtering can in fact lead to absolute instability for any time step and that it does not relax the 
stability condition of the unfiltered method in a useful manner. 

1. INTRODUCTION 

Spectral methods may be used to obtain highly accurate solutions to hyperbolic 
partial differential equations [ 11. For finite domains with general (nonperiodic) 
boundary conditions, Chebyshev series expansions are appropriate. Since the order of 
convergence is exponential for problems with infinitely differentiable solutions, the 
number of polynomials needed is small compared to the number of gridpoints needed 
for similar accuracy with finite difference methods. 

However, the overall efftciency of Chebyshev spectral methods depends on the time 
differencing used. Conventional explicit schemes are easy to formulate, but require 
extremely small time steps for stability. Implicit and semi-implicit schemes allow 
much larger time steps, but are considerably more complicated to implement. 
Recently, a time filtering procedure to make explicit schemes for Chebyshev methods 
unconditionally stable has been proposed [ 2-41. In this paper, we investigate the 
properties and usefulness of this procedure. 

In Section 2 we illustrate Chebyshev spectral methods by formulating them for a 
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simple model problem, the one-dimensional linear advection equation. The time 
filtering procedure is introduced in Section 3 and its effects on stability for the model 
problem are examined in Section 4. Concluding remarks are presented in Section 5. 

2. CHEBYSHEV SPECTRAL METHODS 

To illustrate Chebyshev spectral methods, consider the model problem 

au au 
z+z=o (-1 <x<l,t>O), 

q-1, t) = 0 (t > 01, 

where the initial condition u(x, 0) is specified. The analytical solution u of (2.1) is 
simply 

\ 4x - 4 0) 
4x, t> = , o 

x-t>-11 
x-t<-ll’ (2.2) 

One seeks an approximate solution u of the form 

u(x, t) = 2 C,(t) T,(x), (2.3) 
ll=O 

where T,, is the Chebyshev polynomial of degree n, defined by T,,(cos 0) = cos(m9). 
There are two common ways of defining U, yielding slightly different approximations. 
In the tau method v is represented by its spectral coefficients S, which are defined by 

Here the ~7:) are the spectral coefficients of au/ax, defined by 

$(I) - 2 
i 

* u,(x, t) T,(x) dx = 2 \;“; 
n 

71c, -1 (1 -x2)“* c, /‘;;t, J% 
ntpodd 

(2.4) 

(2.5 1 

where co=2 and c, = ... =c%= 1. 
In contrast, in the collocation method (often referred to as the pseudospectral 
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method) v is represented by its values vj at the collocation points xj = cos(jr/N) 
(j = O,..., N). The values vj are defined by 

(j = O,..., N - l), 

(2.6) 
UN = 0, 

where v;“(t) = vX(xj, t). This derivative may be computed by transforming the vI to 
spectral space via 

(2.7) 

where Co = F,,, = 2 and E, = s . . = I?,,-, = 1, computing the derivative in spectral space 
using (2.5), and transforming back to physical space via 

v,j” = 2 Gp-“(x,i). 
II=0 

(2.8) 

[Note that the spectral coefficients v”,, obtained from (2.7) in the collocation method 
will differ from those defined by (2.4) in the tau method.] The semi-discrete system 
for either method may be written in matrix form as 

dv 
- = L,v 
dt (2.9) 

by differentiating the boundary condition with respect to t. For the tau method v 
consists of the spectral coefficients Co,..., b, and L, is upper triangular (except for the 
last row which comes from the boundary condition), while for the collocation method 
v consists of the physical space values vo,..., u,~ and the matrix is full. 

3. TIME DIFFERENCING AND TIME FILTERING 

Finite differences in t are generally used to solve spectral equations such as (2.9). 
When using an explicit scheme one can take advantage of the spectral representation. 
Specifically, the derivative (2.5) may be computed using the recurrence relation 
C n-, z?y?, - 3:: i = 2nv^, (n = l,..., N, with 5;’ = fit:, = 0), and the transforms (2.7) 
and (2.8) in the collocation method may be computed using the FFT algorithm. 
Therefore, explicit schemes require at most F(N log N) operations per time step. In 
contrast, when using an implicit scheme one must solve an equation of the form 
L,,,v = f for v at each time step. If this equation is solved directly the special 
properties of the spectral representation cannot in general be exploited, so such 
schemes require at least P(N*) operations per time step. 
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A typical explicit scheme for the model problem (2.9) is the modified Euler scheme 

“(kt I/*) = “(k) + ;At L,v’k’, 

VW+l) =“(k) + AtL,wV’k+l/*), (3.1) 

(with the superscript k denoting values at time level f, = k At) which may be written 
as 

vtk+ ‘) = K,(At) dk), (3.2) 

where K,(At) = Z + At L, + f(At)* Li. It is shown in [ 1 ] that for the collocation 
method this scheme is algebraically stable with stability condition 

N2 At < 8. (3.3) 

That is, if (0, ZJ denotes the interval on which the solution is sought and /] . ]) denotes 
any matrix norm, then there exist numbers r > 0 and s > 0 such that 

IIIKN(At)]kJI = B(Nr+skAt) (N+ co, At- 0) (3.4) 

for all k At E [O, T], provided the limits are taken so that (3.3) is satisfied. This type 
of stability is important because it implies convergence (i.e., /] u - v]] -+ 0 as N + co, 
At+ 0) provided a corresponding consistency condition is satisfied [ 11. 

The small time step [At = P(l/N*)] required by (3.3) is typical of explicit schemes 
applied to Chebyshev spectral equations and is related to the increased resolution of 
the Chebyshev series (2.3) near the boundaries x = f 1. Gottlieb and Turkel 12 ] 
suggest that (3.3) may be relaxed by replacing the derivative calculation (2.5) by the 
filtered version 

2At ;; 
At fijt" zz __ 

C” - 
pf(p*~A~)~,,, (3.5) 

p=nt I 
ntpodd 

where a is a constant andfis a suitably chosen filter function. It can be seen that this 
filter effectively expands the x-scale for Chebyshev mode n by the factor l/f(n’a At). 
By choosing the filter properly the column norm of the matrix representing the 
derivative in spectral space may be reduced from N* to F(1). Gottlieb and Turkel 
argue that therefore the stability condition (3.3) will be relaxed to At = F(l) so that 
“time steps are chosen by accuracy requirements alone.” 

4. ABSOLUTE STABILITY ANALYSIS 

The stability defined in the previous section is important for convergence theory, 
but in practice a different type of stability is needed. Since the true solution does not 
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grow with time it is reasonable to require that the approximate solution not grow in 
time for a fixed time step At. This will be the case in general if and only if 

~[~,v(At)l < 1, (4.1) 

where p(A) denotes the spectra1 radius of a matrix A. If (4.1) holds we say that the 
scheme is absolutely stable. We find numerically that (4.1) holds for the unfiltered 
method with the stability condition 

P=N2At<p*, (4.2) 

where /I* is shown in Fig. 1 for 1 <N < 64. This condition is similar to condition 
(3.3) for algebraic stability, even though absolute stability is the stronger 
requirement. The claim of unconditional stability in the sense (3.4) for the filtered 
method therefore might be interpreted as also implying unconditional stability in the 
sense (4.1). Therefore, we consider below the effect of the filter on absolute stability 
for the mode1 problem. Two choices of the filter function are considered and results 
are presented for the collocation method only as the tau results are similar. 

4.1. Trigonometric Filter 
The trigonometric filter function in [2] is 

f(z) = 8 sin(z) - sin(2z) 
62 ’ (4.3) 

as shown in Fig. 2. The corresponding spectra1 radius p[K,(At)] is shown in Fig. 3 
for N = 16 in terms of the normalized time step /I = N* At and the normalized filter 

01 
0 16 32 46 64 

N 

FIG. 1. Normalized time step p* at which the Chebyshev-tau and Chebyshev-collocation methods 
become absolutely unstable lsee (4.2)j. 
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FIG. 2. Trigonometric and exponential filter functions. 
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FIG. 3. Spectral radius of the evolution matrix K,&t) as a function of the normalized time step 
b = N2 Af for various values of the normalized filter parameter y = N’a At as labelled, for the collocation 
method with N = 16 and using the trigonometric filter (4.3). 
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16 32 49 64 

/3= N*at 

FIG. 4. Spectral radius of the evolution matrix K,(df) as a function of the normalized time step 

/3 = IV’ At for various values of the normalized filter parameter 1’ = N’a At as labelled. for the collocation 
method with N= I6 and using the exponential filter (4.4). 

parameter y = N2a At; with this scaling the results are to a good approximation 
independent of N. It can be seen that for small filtering (y < z) the stability properties 
of the scheme are not changed substantially, while for large filtering OJ > rc) the 
scheme is rendered absolutely unstable for all At. The instability for y > 71 might be 
expected, as in this case some of the filter coefficients f(n’a At) may be negative; 
since this changes the sign of the x-derivative for the corresponding Chebyshev 
modes, the problem may then become ill-posed with the boundary condition applied 
at x=-l. 

4.2. Exponential Filter 

The exponential filter function suggested in 14 1 is 

S(z)=~~ll-l8e~‘+Ye~~‘--Ze~“I (4.4) 

(see Fig. 2). The corresponding spectral radius p[K,v(At)] is shown in Fig. 4 for 
N = 16; the results are similar to those obtained with the trigonometric filter. To 
investigate whether in some cases where plKK,(At)l > 1 the amplification may be 
small enough that the filter is still useful, we consider the error obtained for the initial 
condition 

u(x, 0) = e-lwto.5vo.21~~ (4.5) 
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FIG. 5. Continuous L, error at t = 1.0 as a function of the normalized time step b = N’ At for the 
collocation method with N = 16, initial condition (4.5) and filtering ;’ = N’a AI as labelled. The points a 
through e correspond to the solutions shown in Figs. 6 and 7. 

The continuous L, error (computed by Romberg integration and scaled by the 
domain length 2) at t = 1 is shown in Fig. 5 as a function of ,B for various values of y. 
As the amount of filtering increases the error for large /3 decreases, so that for y = 32 
and y = 64 the error is reasonably small even though p[K,&ft)] > 1. Thus in a prac- 
tical sense the filter can in fact stabilize the calculation. 

To see whether these results are useful we present the corresponding solutions. The 
unfiltered solution (y = 0) at t = 1 is shown in Fig. 6 for /I = 1 (essentially no time 
differencing error) and for /? = 16 (‘just below the stability criterion) along with the 
analytical solution for comparison. Filtered results are shown in Fig. 7 for various 
values of /3 and y as indicated in Fig. 5. The net effect of the filter is to concentrate 
the oscillatory part of the solution near x = -1 and the smooth part near x = + 1. 
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FIG. 6. Unfiltered solutions (y = 0) at t = 1.0 as for Fig. 5. with (a) /3= 1 and (b) /?= 16. The 
dashed curve is the analytical solution. 

This effect becomes more pronounced as the amount of filtering y increases and is 
similar to the computational dispersion seen in centered finite difference approx- 
imations to this problem. 

5. CONCLUDING REMARKS 

We have examined the Gottlieb-Turkel time filter for Chebyshev spectral methods 
in some detail. This filter is claimed to produce unconditional (algebraic) stability so 
that “time steps are chosen by accuracy requirements alone.” This stability is useful 
for convergence theory [in the limit as N + 00 and At + 0) but absolute stability is 
needed in practice. Our results indicate that 

(1) small amounts of filtering do not change the absolute stability properties 
significantly; 

(2) large amounts of filtering render the scheme absolutely unstable for any 
time step; 

(3) the filter results in computational dispersion similar to that seen in some 
finite difference schemes. 
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FIG. 7. Filtered solutions at t = 1.0 as for Fig. 5, with (c) p = 16, y = 4, (d) p = 32. y = 16 and (e) 
/I = 32, II= 64. The dashed curve is the analytical solution. 

In physical problems more complicated than the one-dimensional advection 
equation considered here, several modes with different wave or advective speeds may 
be present. The time filter could be useful in such cases if it could stabilize the fastest 
modes without distorting the slower modes of primary interest. However, unless the 
various modes can be treated independently, the same filter parameter a and time step 
At must be used in computing all spatial derivatives and hence the amount of filtering 
(as measured by the normalized filter parameter y) will be the same for each mode. 
The curves for constant y in Fig. 5 suggest that if y is large enough to stabilize the 
fast modes (for which /3 is large) then the slow modes (for which p is small) will be 
significantly distorted. This conclusion remains to be verified in actual practice. 
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